Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nat Prod Res ; : 1-7, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38247357

RESUMEN

Bioactive phenolics can be found in abundance in Calophyllum species. Phytochemical studies are carried out on the stem bark of Calophyllum recurvatum and Calophyllum andersonii, which has led to the isolation and elucidation of phytochemicals, thwaitesixanthone (1), teysmanone A (2), soulattrolide (3), calanone (4), isocalanone (5) and friedelin (6), respectively. The cytotoxic activities of compounds (2), (3), (4) and (5) as well as plant extracts were tested against HeLa Chang liver, HepG2 and HL-7702 cell lines. Phenylpyranocoumarins, teysmanone A (2) and soulattrolide (3) portrayed appreciable cytotoxicity activities at 42.57 ± 1.20 and 34.53 ± 3.41 µg/mL, respectively against HepG2 cell line comparable to the positive control, curcumin. Meanwhile, n-hexane extract from C. recurvatum exhibited cytotoxicity with the IC50 value of 36.43 ± 0.64 and 26.25 ± 4.83 µg/mL against HeLa Chang liver and HepG2 cell lines. All the tested compounds and plant extracts displayed non-cytotoxic properties on HL-7702 cell line.

2.
Chem Biodivers ; 21(3): e202301936, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38268343

RESUMEN

The genus Calophyllum from the family Calophyllaceae has been extensively investigated in the past due to its rich source of bioactive phenolics such as coumarins, chromanones, and xanthones. In this study, phytochemical investigation on the stem bark of Calophyllum havilandii has afforded a new 4-propyldihydrocoumarin derivative, havilarin (1) together with calolongic acid (2), caloteysmannic acid (3), isocalolongic acid (4), euxanthone (5), and ß-sitosterol (6). The chemical structure of compound 1 was elucidated and established based on detailed spectroscopic techniques, including MS, IR, UV, 1D and 2D NMR. The results of anti-bacillus study indicated that the chloroform extract showed promising activities with MIC value ranging between 0.5 to 1 µg/mL on selected bacillus strains. Besides, the plant extracts and compounds 1-4 were assessed for their cytotoxicity potential on HL-7702 cell line. All the tested plant extracts and respective chemical constituents displayed non-cytotoxic activity on HL-7702 cell line.


Asunto(s)
Calophyllum , Calophyllum/química , Corteza de la Planta/química , Extractos Vegetales/química , Espectroscopía de Resonancia Magnética , Fitoquímicos/farmacología , Fitoquímicos/análisis , Estructura Molecular
3.
Nat Prod Res ; 38(5): 873-878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37005001

RESUMEN

Genus Calophyllum is well-known for its phenolic constituents, especially coumarins, which have shown to have a wide range of significant biological activities. In this study, four known phenolic constituents and two triterpenoids have been isolated from the stem bark of Calophyllum lanigerum. The compounds were two pyranochromanone acids are known as caloteysmannic acid (1), isocalolongic acid (2), a simple dihydroxyxanthone, namely euxanthone (3), one coumarin named calanone (4), and two common triterpenoids, friedelin (5), and stigmasterol (6). Chromanone acids were reported for the first time in this Calophyllum species. Cytotoxic evaluations were carried out on n-hexane extract (87.14 ± 2.04 µg/mL; 81.46 ± 2.42 µg/mL) followed by the chromanone acids (1 [79.96 ± 2.39 µM; 83.41 ± 3.39 µM] & 2 [57.88 ± 2.34; 53.04 ± 3.18 µM]) against two cancerous cell lines, MDA-MB-231 and MG-63 cell lines, respectively. The results showed that all tested samples exhibited moderate cytotoxicity.


Asunto(s)
Antineoplásicos , Calophyllum , Triterpenos , Xantonas , Triterpenos/farmacología , Corteza de la Planta , Extractos Vegetales , Línea Celular
4.
Front Vet Sci ; 10: 1153769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323848

RESUMEN

Introduction: This study aimed to assess the effects of supplementing chicken feed with Moringa oleifera leaf powder, a phytobiotic, on the gastrointestinal microbiota. The objective was to examine the microbial changes induced by the supplementation. Methods: A total of 40, one-day-old chickens were fed their basal diet for 42 days and then divided into two groups: SG1 (basal diet) and SG2 (basal diet + 10 g/kg Moringa oleifera leaf powder). Metagenomics analysis was conducted to analyze operational taxonomic units (OTUs), species annotation, and biodiversity. Additionally, 16S rRNA sequencing was performed for molecular characterization of isolated gut bacteria, identified as Enterococcus faecium. The isolated bacteria were tested for essential metabolites, demonstrating antibacterial, antioxidant, and anticancer activities. Results and discussion: The analysis revealed variations in the microbial composition between the control group (SG1) and the M. oleifera-treated group (SG2). SG2 showed a 47% increase in Bacteroides and a 30% decrease in Firmicutes, Proteobacteria, Actinobacteria, and Tenericutes compared to SG1. TM7 bacteria were observed exclusively in the M. oleifera-treated group. These findings suggest that Moringa oleifera leaf powder acts as a modulator that enhances chicken gut microbiota, promoting the colonization of beneficial bacteria. PICRUSt analysis supported these findings, showing increased carbohydrate and lipid metabolism in the M.oleifera-treated gut microbiota. Conclusion: This study indicates that supplementing chicken feed with Moringa oleifera leaf powder as a phytobiotic enhances the gut microbiota in chicken models, potentially improving overall health. The observed changes in bacterial composition, increased presence of Bacteroides, and exclusive presence of TM7 bacteria suggest a positive modulation of microbial balance. The essential metabolites from isolated Enterococcus faecium bacteria further support the potential benefits of Moringa oleifera supplementation.

5.
Environ Res ; 231(Pt 1): 115988, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105296

RESUMEN

Plastics have become an integral part of human life. Single-use plastics (SUPs) are disposable plastics designed to be used once then promptly discarded or recycled. This SUPs range from packaging and takeaway containers to disposable razors and hotel toiletries. Synthetic plastics, which are made of non-renewable petroleum and natural gas resources, require decades to perpetually disintegrate in nature thus contribute to plastic pollution worldwide, especially in marine environments. In response to these problems, bioplastics or bio-based and biodegradable polymers from renewable sources has been considered as an alternative. Understanding the mechanisms behind the degradation of conventional SUPs and biodegradability of their greener counterpart, bioplastics, is crucial for appropriate material selection in the future. This review aims to provide insights into the degradation or disintegration of conventional single-use plastics and the biodegradability of the different types of greener-counterparts, bioplastics, their mechanisms, and conditions. This review highlights on the biodegradation in the environments including composting systems. Here, the various types of alternative biodegradable polymers, such as bacterially biosynthesised bioplastics, natural fibre-reinforced plastics, starch-, cellulose-, lignin-, and soy-based polymers were explored. Review of past literature revealed that although bioplastics are relatively eco-friendly, their natural compositions and properties are inconsistent. Furthermore, the global plastic market for biodegradable plastics remains relatively small and require further research and commercialization efforts, especially considering the urgency of plastic and microplastic pollution as currently critical global issue. Biodegradable plastics have potential to replace conventional plastics as they show biodegradation ability under real environments, and thus intensive research on the various biodegradable plastics is needed to inform stakeholders and policy makers on the appropriate response to the gradually emerging biodegradable plastics.


Asunto(s)
Plásticos Biodegradables , Plásticos , Humanos , Polímeros , Lignina , Biodegradación Ambiental , Almidón
6.
Artículo en Inglés | MEDLINE | ID: mdl-35502171

RESUMEN

Moringa concanensis Nimmo (Moringaceae) belongs to the same family of M. oleifera (miracle tree) and is a medicinal plant traditionally used by Indians to treat various ailments related to diabetes, tumours, inflammation, and blood pressure. Despite its versatility, the photoprotective properties of the plant remain unclear. This study revealed the UV-protective properties of its methanol bark extract and respective subfractions, chloroform, hexane, and ethyl acetate through total phenolic and flavonoid content (TPC & TFC), antioxidant (DPPH), sun protecting factor (SPF) value, and UV absorption spectra analysis. This study also investigated on the inhibitory effect of the tested samples on collagenases and elastase, which are well-known for their role in the skin. The cytotoxic and H2O2 scavenging properties of M. concanensis in 3T3-L1 cells were explored. Finally, the phytochemical profiling of the active fraction was conducted through UPLC-QTOF/MS analysis. Among the tested fractions, the chloroform fraction of M. concanensis showed the highest TPC (30.92 ± 0.71 mg GAE/DW), TFC (29.05 ± 0.09 mg QE/DW), and antioxidant properties (IC50-6.616 ± 1.90 µgml-1). Additionally, chloroform fraction demonstrated the highest SPF value, 10.46 at 200 µgml-1, compared to the other tested fractions. All the fractions showed a broad absorption spectrum covering both UVA and UVB ranges. The chloroform fraction of M. concanensis also showed collagenase (50%) and elastase (IC50-2.95 ± 1.23 µgml-1) inhibition properties similar to the positive control. Cytotoxic results revealed that the chloroform fraction of M. concanensis prevented the H2O2-induced oxidative damage in 3T3-L1 cells even at lower concentrations (1.56 µgml-1). UPLC-QTOF/MS analysis tentatively identified the presence of bioactive flavonoids and phenolics such as astragalin, quercetin, isoquercetin, and caffeic acid in the active fraction of M. concanensis bark. Overall, it is suggested that the chloroform fraction of M. concanensis bark has the potency to be used as an active ingredient in sunscreen products.

7.
Nat Prod Res ; 36(2): 654-659, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32674628

RESUMEN

Species from the Genus Calophyllum are rich source for bioactive phenolic compounds such as coumarins and xanthones. Phytochemical study carried out on the plant, Calophyllum macrocarpum has led to the isolation of three known prenylated xanthones, ananixanthone (1), trapezifolixanthone (2) and 8-deoxygartanin (3) with two common triterpenoids, stigmasterol (4), and friedelin (5). The structures of these compounds were identified and determined using spectroscopic techniques such as NMR and MS. The cytotoxic activities of compounds 1 and 2 as well as the extracts were tested against HeLa Chang liver and HEK-293 cell lines. Compound 1 exhibited appreciable cytotoxicity with the IC50 value of 11.08 ± 3.09 µM against HeLa Chang liver cell line and moderate cytotoxicity against HEK-293 cell line while compound 2 showed limited toxicity against these two cell lines.


Asunto(s)
Antineoplásicos Fitogénicos , Calophyllum , Xantonas , Antineoplásicos Fitogénicos/farmacología , Cumarinas/farmacología , Células HEK293 , Humanos , Estructura Molecular , Fitoquímicos/farmacología
8.
Molecules ; 26(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204457

RESUMEN

Mitragyna speciosa Korth (kratom) is known for its psychoactive and analgesic properties. Mitragynine is the primary constituent present in kratom leaves. This study highlights the utilisation of the green accelerated solvent extraction technique to produce a better, non-toxic and antinociceptive active botanical extract of kratom. ASE M. speciosa extract had a dry yield (0.53-2.91 g) and showed a constant mitragynine content (6.53-7.19%) when extracted with organic solvents of different polarities. It only requires a shorter extraction time (5 min) and a reduced amount of solvents (less than 100 mL). A substantial amount of total phenolic (407.83 ± 2.50 GAE mg/g and flavonoids (194.00 ± 5.00 QE mg/g) were found in ASE kratom ethanol extract. The MTT test indicated that the ASE kratom ethanolic leaf extract is non-cytotoxic towards HEK-293 and HeLa Chang liver cells. In mice, ASE kratom ethanolic extract (200 mg/kg) demonstrated a better antinociceptive effect compared to methanol and ethyl acetate leaf extracts. The presence of bioactive indole alkaloids and flavonols such as mitragynine, paynantheine, quercetin, and rutin in ASE kratom ethanolic leaf extract was detected using UHPLC-ESI-QTOF-MS/MS analysis supports its antinociceptive properties. ASE ethanolic leaf extract offers a better, safe, and cost-effective choice of test botanical extract for further preclinical studies.


Asunto(s)
Mitragyna/química , Extractos Vegetales/química , Alcaloides de Triptamina Secologanina/aislamiento & purificación , Animales , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Mitragyna/metabolismo , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Alcaloides de Triptamina Secologanina/química , Solventes/química
9.
Nat Prod Res ; 35(24): 6067-6072, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32901512

RESUMEN

Previous studies on Calophyllum species have shown the existence of a wide variety of bioactive xanthones and coumarins. Phytochemical investigations carried out on the plant, Calophyllum hosei led to the isolation of eleven known xanthones, ananixanthone (1), 9-hydroxycalabaxanthone (2), dombakinaxanthone (3), thwaitesixanthone (4), caloxanthone B (5), trapezifolixanthone (6), ß-mangostin (7), osajaxanthone (8), caloxanthone A (9), calozeyloxanthone (10) and rubraxanthone (11). The structures of these compounds were identified and elucidated using spectroscopic techniques such as NMR and MS. The cytotoxicity and nitric oxide production inhibitory activities of selected xanthones as well as the extracts were tested against HL-60 cells and RAW 264.7 murine macrophages, respectively. Among all tested compounds, ß-mangostin exhibited appreciable cytotoxicity against HL-60 cells with the IC50 value of 7.16 ± 0.70 µg/mL and rubraxanthone exhibited significant nitric oxide inhibitory activity against LPS induced RAW 264.7 murine macrophages with the IC50 value of 6.45 ± 0.15 µg/mL.


Asunto(s)
Calophyllum , Xantonas , Animales , Cumarinas , Humanos , Ratones , Estructura Molecular , Óxido Nítrico , Fitoquímicos , Xantonas/farmacología
10.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-500360

RESUMEN

Objective: To compare the inhibitory effects of acetone extracts from the stem bark of three Acacia species (Acacia dealbata, Acacia ferruginea and Acacia leucophloea) on nitric oxide production. Methods: The lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells were used to investigate the regulatory effect of acetone extracts of three Acacia stem barks on nitric oxide production and the expression of inducible nitric oxide synthase, cyclooxygenase-2 and tumor necrosis factor-α. Further, the phenolic profile of acetone extracts from the Acacia barks was determined by liquid chromatography-mass spec-trometry/mass spectrometry analysis. Results: All the three extracts significantly decreased LPS-induced NO production as well as the expression of inducible nitric oxide synthase, cyclooxygenase-2 and tumor necrosis factor-α in a concentration dependent manner (25, 50 and 75 μg/mL). In the liquid chromatography-mass spectrometry/mass spectrometry analysis, acetone extract of Acacia ferruginea bark revealed the presence of 12 different phenolic components including quercetin, catechin, ellagic acid and rosmanol. However, Acacia dealbata and Acacia leucophloea barks each contained 6 different phenolic components. Conclusions: The acetone extracts of three Acacia species effectively inhibited the NO production in LPS-stimulated RAW 264.7 cells and the presence of different phenolic components in the bark extracts might be responsible for reducing the NO level in cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...